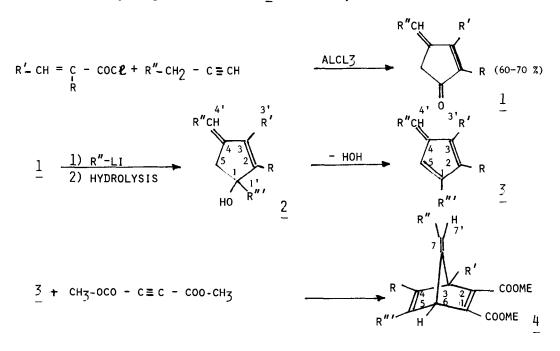
Tetrahedron Letters No. 43, pp 3713 - 3714, 1975. Pergamon Press. Printed in Great Britain.


A CONVENIENT METHOD FOR THE PREPARATION OF ALKYLATED FULVENES FROM UNSATURATED ACID CHLORIDES AND ACETYLENIC COMPOUNDS

C. RABILLER AND G.J. MARTIN

(Laboratoire de Chimie Organique Physique C.N.R.S., ERA nº 315 B.P. 1044 - 44037 NANTES CEDEX - FRANCE)

(Received in UK 10 September 1975; accepted for publication 15 September 1975)

Several methods for synthesing fulvenes are described in the literature 1-2-3-4-5-6. However, it is often very difficult to synthesize the alkylsubstituted starting materials such as cyclopentadienes or cyclopentadienones. We wish to present here the preparation of alkylated fulvenes from α -unsaturated acid chlorides and monosubstituted alkynes via the readily available 4-alkylidene 2-cyclopentenone 1^7 . Organo lithium compounds add fairly well to the carbonyl group at 213°K and the corresponding unstable alcohols 2 lead directly to fulvenes.

3714

The purification of the alcohols $\underline{2}$ is not easy and their elemental analyses are not significant since these compounds easily lose a molecule of water. They were however unambigously characterized by their NMR spectra. Above 323 - 333 °K the clear oil containing $\underline{2}$ becomes yellow orange or red and fulvene $\underline{3}$ is almost quantitatively formed from $\underline{2}$ (overall yield as high as 40 % may obtained from acid chlorides and acetylenic compounds). The following fulvenes have been synthesized : $R = CH_3$, R' = H, $R'' = C_2H_5$, $R''' = CH_3$; $R = R' = CH_3$, $R'' = C_2H_5$, $R''' = CH_3$; $R = CH_3$, $R'' = C_3H_7$, $R''' = CH_3$; $R = CH_3$, $R'' = C_2H_5$; $R=R'=R''=CH_3$; Spectroscopic properties (NMR, IR and UV) of two stable fulvenes are summarized in the experimental part and agree with previous data⁸. An additional proof of the structure $\underline{3}$ has been furnished by a Diels-Alder reaction of $\underline{3}$ with $CH_3OCO-C \equiv C-COO-CH_3$: 7-alkylidene-1,4 norbornadienes $\underline{4}$ are obtained in quantitative yields. The structure of adducts $\underline{4}$ has been etablished by PMR spectroscopy.

PREPARATION, PHYSICAL AND SPECTROSCOPIC PROPERTIES

<u>FULVENES</u>: To a solution of 0,12 M alkyllithium (from 0,25 g atom of lithium and 0,12 M of alkylbromide) in 100 ml anhydrous ether was slowly added (3 h) a solution of 0,1 M cyclopentenone <u>1</u> (prepared as described in ref⁷) in 50 ml anhydrous ether at 203°K. The resulting mixture was stirred for an hour at 203°K, then gently heated to room temperature and was hydrolysed with a solution of 1 g acetic acid in 100 ml water.

- R = CH₃, R' = H, R" = C₂H₅, R"' = CH₃ : bp : 53°C/0,2 Torr ; ¹H NMR (δ /TMS ppm in CCl₄) $\delta_1, = \delta_2, = 1,94$; $\delta_3 = 5,98$, δ_4 , = 5,83, $\delta_5 = 5,67$; IR(KBr) $\delta_{C=C} = 1645$ cm⁻¹, Skeletal 1325, 1375 cm⁻¹; UV : heptan λ_{max} : 350,5 and 260 rm; ϵ_{max} : 236 and 1,51.10⁴; methanol : λ_{max} : 350 and 260 rm : ϵ_{max} : 189 and 130.10⁴.

- R = R'= CH₃, R" = C₂H₅, R"' = CH₃. bp : 57°C/0,1 torr ; ¹H NMR (/TMS in CC1₄) $\delta_1 \simeq \delta_2 \simeq 1,85$, δ_4 , = 5,85, δ_5 = 5,85 ; IR(KBr) : $\delta_{C=C} = 1648 \text{ cm}^{-1}$, Skeletal : 1320, 1375 cm⁻¹ ; UV : heptan λ_{\max} : 360,5 and 254,5 nm, ϵ_{\max} : 211 and 1,49.10⁴ ; methanol λ_{\max} : 365 and 255,5 nm, ϵ_{\max} : 190 and 1,24.10⁴.

<u>ADDUCTS</u> : To a solution of 10^{-2} M fulvene in 5 ml carbon tetrachloride was added 10^{-2} M CH₃OCO-C = C-COOCH₃ at room temperature : the reaction was complete in 2 hrs. The adduct <u>4</u> is a visquous product which decomposes on heating. R=CH₃, R'=H, R''=C₂H₅, R'''=CH₃, ${}^{1}H_{NMR}$ ($\delta_{ppm/TMS}$ and J(Hz) in CCl₄) : δ_{COOCH_3} = 3,815, δ_{3} =3,815, δ_{4} '= δ_{5} , = 1,82, δ_{6} =4,04, δ_{7} =4,195, J₆₃=2,7, ${}^{4}J_{67}$,=0,65.

REFERENCES

- (1) D. TABER, N.PIEUS, E.U. BECKER and P.E. SPOERRI, J. Amer. Chem. Soc., 77, 1010 (1955).
- (2) G.A. TARASOVA, G.S. TAITS and A.F. PLATE, Izvest. Akad. Nauk. Otdl. Khim. Nauk, 1267, 1956, (CA 51, 4961 (1957)).
- (3) M. NEUENSCHWANDER, Helv. Chem. Acta, 47, 1022 (1964).
- (4) C. WENTRUP and P. MULLER, Tetrahedron Letters, 31, 2915 (1973).
- (5) L. SKATTEBOL, Tetrahedron 23, 1107 (1967).
- (6) T. EICHER and T. PFISTER, Tetrahedron Letters 38, 3969 (1972).
- (7) G.J. MARTIN, C. RABILLER and G. MABON, Tetrahedron 28, 4027 (1972).
- (8) J.C. WOOD, R.M. OLOFSON, D.M. SAUNDERS, Analyt. Chem., 30, 1339 (1958).